Education
- Medical University Lübeck, Germany, 10/1989 - 07/1995
- Harvard Medical School, Boston, MA 08/1995 - 04/1996
- University of Münster, Germany, 05/1996 - 12/1996
- University of Münster, Germany, Department of Pediatrics, Medical Intern, 02/1997 - 07/1998
- University of Münster, Germany, Department of Pediatrics, Medical Resident, 08/1998 - 09/2001
- Oregon Health & Science University, Portland, Oregon, Department of Molecular and Medical Genetics, 10/2001 -10/2005
In the News
Grants and Funding
- Next-generation human liver gene therapy | NIH | 2021-09-30 - 2026-06-30 | Role: Principal Investigator
- Microphysiological systems to interrogate the Islet-Liver-Adipose Axis in normal physiology and Type-2 Diabetes Mellitus | NIH | 2018-09-20 - 2023-07-31 | Role: Co-Principal Investigator
- Targeting AAV vectors to cell types involved in alcohol-induced liver injury | NIH | 2018-09-01 - 2023-05-31 | Role: Principal Investigator
- Building a functional biliary system from hepatocytes | NIH | 2016-09-01 - 2021-07-31 | Role: Co-Principal Investigator
- Microphysiological systems to interrogate the Islet-Liver-Adipose Axis in normal physiology and Type-2 Diabetes Mellitus | NIH | 2018-09-20 - 2020-07-31 | Role: Co-Principal Investigator
- Myofibroblast-to-hepatocyte conversion as a therapy for alcoholic liver disease | NIH | 2013-09-01 - 2016-08-31 | Role: Principal Investigator
- Liver regeneration with stems cells of uniparental origin | NIH | 2008-04-01 - 2013-08-31 | Role: Co-Principal Investigator
Research Narrative
Our research is aimed at developing new therapies for patients with severe liver diseases. To restore liver function in patients with liver failure, we are working on generating hepatocytes from human pluripotent stem cells or by reprogramming of readily accessible human cell types. To be therapeutically effective, these cells need to replicate both function and the ability to proliferate of primary human hepatocytes. To establish and improve protocols for the production of such cells, we have been working on obtaining a detailed molecular understanding of hepatocyte differentiation and regeneration. For this, we are using mouse models for liver cell lineage tracing developed in our laboratory. In addition, we are using rigorous animal models of human liver failure to test the therapeutic efficacy of our surrogate hepatocytes. While developing novel liver cell therapies is our main focus, we are also using hepatocytes derived from human pluripotent stem cells or by reprogramming to generate in vitro and in vivo liver disease models. Another goal of our laboratory is to determine the origin and follow the fate of liver cancer-initiating cells with the goal to identify the molecular mechanisms that drive liver cancer formation and progression. For this, we are using new mouse models generated in our laboratory. By obtaining an improved understanding of hepatocarcinogenesis, we hope to contribute to the development of strategies for early detection and effective eradication of liver cancer.
Research Interests
Liver Regeneration
Liver Cell Therapy
LIver Development
Research Pathways
Publications
- A simple code for installing hepatocyte function.| | PubMed
- Mouse chimeras as a system to investigate development, cell and tissue function, disease mechanisms and organ regeneration.| | PubMed
- Core promoter recognition complex changes accompany liver development.| | PubMed
- The MAP3K TAK1: a chock block to liver cancer formation.| | PubMed
- Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice.| | PubMed
- Transplanted nonviable human hepatocytes produce appreciable serum albumin levels in mice.| | PubMed
- miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues.| | PubMed
- Therapeutic liver reconstitution with murine cells isolated long after death.| | PubMed
- MicroRNAs control hepatocyte proliferation during liver regeneration.| | PubMed
- Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis.| | PubMed